
1

CS 188: Artificial Intelligence

Spring 2010

Lecture 20: HMMs and Particle Filtering

4/5/2010

Pieter Abbeel --- UC Berkeley

Many slides over this course adapted from Dan Klein, Stuart Russell,

Andrew Moore

Announcements

� Course contest

� Fun! (And extra credit.)

� Regular tournaments

� Instructions posted soon!

2

Mid-Semester Evals
� Generally, things seem good!

� General

� Examples are appreciated in lecture

� Favorite aspect: projects (almost all) --- writtens significantly less preferred

� Office hours:

� Most common answers: “Helpful.” and “Haven’t gone.”

� Some: too crowded. � perhaps try a different office hour slot

� Section:

� Split between basically positive and don’t go

� Assignments
� Written: median time 6hrs

� Programming: median time 10hrs

� Exams:

� Midterm: evening (13) vs in-class (11) or indifferent (8)

� Do the contest

3

Outline

� HMMs: representation

� HMMs: inference

� Forward algorithm

� Particle filtering

8

Recap: Reasoning Over Time

� Stationary Markov models

� Hidden Markov models

X2X1 X3 X4 rain sun

0.7

0.7

0.3

0.3

X5X2

E1

X1 X3 X4

E2 E3 E4 E5

X E P

rain umbrella 0.9

rain no umbrella 0.1

sun umbrella 0.2

sun no umbrella 0.8

Conditional Independence

� HMMs have two important independence properties:
� Markov hidden process, future depends on past via the present

� Current observation independent of all else given current state

� Quiz: does this mean that observations are independent
given no evidence?
� [No, correlated by the hidden state]

X5X2

E1

X1 X3 X4

E2 E3 E4 E5

2

Real HMM Examples

� Speech recognition HMMs:
� Observations are acoustic signals (continuous valued)

� States are specific positions in specific words (so, tens of
thousands)

� Machine translation HMMs:
� Observations are words (tens of thousands)

� States are translation options

� Robot tracking:
� Observations are range readings (continuous)

� States are positions on a map (continuous)

Outline

� HMMs: representation

� HMMs: inference

� Forward algorithm

� Particle filtering

12

Filtering / Monitoring

� Filtering, or monitoring, is the task of tracking the
distribution B(X) (the belief state) over time

� We start with B(X) in an initial setting, usually uniform

� As time passes, or we get observations, we update B(X)

� The Kalman filter was invented in the 60’s and first
implemented as a method of trajectory estimation for the
Apollo program

Example: Robot Localization

t=0

Sensor model: never more than 1 mistake

Motion model: may not execute action with small prob.

10Prob

Example from
Michael Pfeiffer

Example: Robot Localization

t=1

10Prob

Example: Robot Localization

t=2

10Prob

3

Example: Robot Localization

t=3

10Prob

Example: Robot Localization

t=4

10Prob

Example: Robot Localization

t=5

10Prob

Inference Recap: Simple Cases

E1

X1 X2X1

Passage of Time

� Assume we have current belief P(X | evidence to date)

� Then, after one time step passes:

� Or, compactly:

� Basic idea: beliefs get “pushed” through the transitions

� With the “B” notation, we have to be careful about what time step

t the belief is about, and what evidence it includes

X2X1

Example: Passage of Time

� As time passes, uncertainty “accumulates”

T = 1 T = 2 T = 5

Transition model: ghosts usually go clockwise

4

Observation

� Assume we have current belief P(X | previous evidence):

� Then:

� Or:

� Basic idea: beliefs reweighted by likelihood of evidence

� Unlike passage of time, we have to renormalize

E1

X1

Example: Observation

� As we get observations, beliefs get

reweighted, uncertainty “decreases”

Before observation After observation

Example HMM The Forward Algorithm

� We are given evidence at each time and want to know

� We can derive the following updates

We can normalize
as we go if we

want to have
P(x|e) at each

time step, or just
once at the end…

Online Belief Updates

� Every time step, we start with current P(X | evidence)

� We update for time:

� We update for evidence:

� The forward algorithm does both at once (and doesn’t normalize)

� Problem: space is |X| and time is |X|2 per time step

X2X1

X2

E2

Recap: Filtering
�

Elapse time: compute P(Xt | e1:t-1)

Observe: compute P(Xt | e1:t)

X2

E1

X1

E2

<0.5, 0.5>

Belief: <P(rain), P(sun)>

<0.82, 0.18>

<0.63, 0.37>

<0.88, 0.12>

Prior on X1

Observe

Elapse time

Observe

5

Outline

� HMMs: representation

� HMMs: inference

� Forward algorithm

� Particle filtering

31

Particle Filtering

0.0 0.1

0.0 0.0

0.0

0.2

0.0 0.2 0.5

� Filtering: approximate solution

� Sometimes |X| is too big to use
exact inference
� |X| may be too big to even store B(X)

� E.g. X is continuous

� Solution: approximate inference
� Track samples of X, not all values

� Samples are called particles
� Time per step is linear in the number

of samples
� But: number needed may be large

� In memory: list of particles, not
states

� This is how robot localization
works in practice

Particle Filtering: Elapse Time

� Each particle is moved by sampling its
next position from the transition model

� This is like prior sampling – samples’
frequencies reflect the transition probs

� Here, most samples move clockwise, but
some move in another direction or stay in
place

� This captures the passage of time
� If we have enough samples, close to the

exact values before and after (consistent)

� Slightly trickier:
� We don’t sample the observation, we fix it

� This is similar to likelihood weighting, so
we downweight our samples based on
the evidence

� Note that, as before, the probabilities
don’t sum to one, since most have been
downweighted (in fact they sum to an
approximation of P(e))

Particle Filtering: Observe

Particle Filtering: Resample

� Rather than tracking weighted
samples, we resample

� N times, we choose from our weighted
sample distribution (i.e. draw with
replacement)

� This is equivalent to renormalizing the
distribution

� Now the update is complete for this
time step, continue with the next one

Particle Filtering

� Sometimes |X| is too big to use
exact inference
� |X| may be too big to even store B(X)

� E.g. X is continuous

� |X|2 may be too big to do updates

� Solution: approximate inference
� Track samples of X, not all values

� Samples are called particles
� Time per step is linear in the number

of samples
� But: number needed may be large

� In memory: list of particles, not
states

� This is how robot localization
works in practice

0.0 0.1

0.0 0.0

0.0

0.2

0.0 0.2 0.5

6

Representation: Particles

� Our representation of P(X) is now

a list of N particles (samples)

� Generally, N << |X|

� Storing map from X to counts
would defeat the point

� P(x) approximated by number of

particles with value x

� So, many x will have P(x) = 0!

� More particles, more accuracy

� For now, all particles have a

weight of 1

37

Particles:
(3,3)
(2,3)
(3,3)

(3,2)
(3,3)
(3,2)
(2,1)
(3,3)
(3,3)

(2,1)

Particle Filtering: Elapse Time

� Each particle is moved by sampling its
next position from the transition model

� This is like prior sampling – samples’
frequencies reflect the transition probs

� Here, most samples move clockwise, but
some move in another direction or stay in
place

� This captures the passage of time
� If we have enough samples, close to the

exact values before and after (consistent)

Particle Filtering: Observe

� Slightly trickier:
� Don’t do rejection sampling (why not?)

� We don’t sample the observation, we fix it

� This is similar to likelihood weighting, so
we downweight our samples based on
the evidence

� Note that, as before, the probabilities
don’t sum to one, since most have been
downweighted (in fact they sum to an
approximation of P(e))

Particle Filtering: Resample

� Rather than tracking
weighted samples,
we resample

� N times, we choose
from our weighted
sample distribution
(i.e. draw with
replacement)

� This is equivalent to
renormalizing the
distribution

� Now the update is
complete for this time
step, continue with
the next one

Old Particles:
(3,3) w=0.1
(2,1) w=0.9
(2,1) w=0.9

(3,1) w=0.4
(3,2) w=0.3
(2,2) w=0.4
(1,1) w=0.4
(3,1) w=0.4
(2,1) w=0.9

(3,2) w=0.3

Old Particles:
(2,1) w=1
(2,1) w=1
(2,1) w=1

(3,2) w=1
(2,2) w=1
(2,1) w=1
(1,1) w=1
(3,1) w=1
(2,1) w=1

(1,1) w=1

Robot Localization

� In robot localization:

� We know the map, but not the robot’s position

� Observations may be vectors of range finder readings

� State space and readings are typically continuous (works

basically like a very fine grid) and so we cannot store B(X)

� Particle filtering is a main technique

� [Demos]

